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Abstract— Association rules can mine the relevant evidence of 
computer crime from the massive data and association rules 
among data itemset, and further mine crime trends and 
connections among different crimes. They can help detect and 
leads case policies and prevent crime with given criterions. 
Frequent item set mining (FIM) plays a fundamental 
Associations, correlations and electronic evidence analysis 
area like many real-world data mining areas. FP-growth 
pattern of constant search for the most famous FIM 
algorithm. Incrementing data, time and space costs FP-growth 
will be mining algorithms bottleneck. Information and 
communication technologies in the world, with rapid 
advancements in the crimes committed are becoming 
technologically intensive. Use digital devices when crime, 
forensic examiners and practical frameworks which can pose 
as evidence to recover the data for analyzing the methods to 
adopt. Data Generation, Data Warehousing and Data Mining, 
are the three essential features involved in the investigation 
process. So that we proposed a a novel parallelized algorithm 
called PISPO based on the cloud-computing framework 
MapReduce, which is widely used to cope with largescale data 
and captures both the content and state to be distributed to 
the changed and original of the transactions dataset to SPO-
tree. 

Keywords— computer crime; PISPO; ISPO-tree; MapReduce; 
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I. INTRODUCTION 
The digital world has penetrated every aspect of today’s 
generation, both in the space of human life and mind, not 
even sparing the criminal sphere of the world. According to 
Jim Christy, Director of Cyber Crime Institute, forensic 
science is the application of science to legal process and 
therefore against crime. Science and technology, and in fact 
or in a Court of law of evidence relating to the use of in the 
process. When crime is aided by or digital device (s), 
including forensic investigations using digital or cyber 
forensic categorized under. If only one computer or digital 
storage medium is digital tools, as we check in computer 
forensics. Computer forensic (a.k.a. digital forensic) 
forensic science, whose goal is to explain the current state 
of digital artifact is a branch. 
Digital Forensic Research Workshop (DFRWS) has defined 
Digital Forensic Science as “the use of scientifically 
derived and proven methods toward the preservation, 
collection, validation, identification, analysis, 
interpretation, documentation and presentation of digital 
evidence derived from digital sources for the purpose of 
facilitating or 

furthering the reconstruction of events found to be criminal, 
or helping to anticipate unauthorized actions shown to be 
disruptive to planned operations”. Digital forensic science 
covers computer forensics, network forensics, disk, firewall 
forensics, forensics, database device, mobile device 
forensics, software forensics, live system forensics, etc. 
Digital forensic incident (s) and professionals who have 
developed and applied advances has been described as 
driven. DFRW media analyze a digital forensic analysis, 
the other two code analysis and network analysis being 
identified as three main specific type. This paper digital 
forensic investigation process introduces a framework for 
the physical storage device. It is also a tool to access and 
analyze its contents flash drive is a specific case. Paper 
details stored on the Flash drive data preprocessing steps to 
bring out information. 
The key contribution of this research is proposing and 
developing a novel tree structure for maintaining frequent 
patterns about electronic evidence in an incremental 
dataset. 
We offer algorithm ISPO-tree (single pass ordered tree) 
based on both content and an innovative approach for 
parallelizing Map Reduce FP-FP-growth algorithm for a 
tree change also have captured the State of transactions in 
the dataset that intelligently on a large scale mining 
operations and functions in computational free shards Map 
Reduce jobs map. This computer failures with the ability to 
start from the tree can achieve near linear speedup. 

II. LITERATURE SURVEY

[1] J. W. Han, J. Pei, and Y. W. Yin, Mining frequent 
patterns in transaction databases, time series databases, and 
many other kinds of databases has been studied popularly 
in data mining research. Most of the previous studies adopt 
an Apriori -like candidate set generation-and-test approach. 
Ho w ever, candidate set generation is still costly, 
especially when there exist prolic patterns and/or long 
patterns. 
In this study, we propose a novel frequent pattern tree (FP-
tree) structure, which is often about the pattern is 
compressed, important information for an extended prefix 
tree structure, the complete set of patterns and pattern piece 
by mining an efficient FP-tree based mining mode, FP-
growth, develop. With three potential mining techniques 
AC hived: (1) a large database is a highly compact, much 
smaller data structure which avoids expensive, repeated 
database scans, (2) our FP-tree is narrow-based mining in 
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large numbers to avoid costly generation candidate set a 
pattern fragment growth method adopts, and (3) a split-
divide and conquer method, small mined databases for a set 
of conditional conned patterns to decompose in mining 
operations, which dramatically reduces the search space. 
FP-growth method is efficient and scalable for both long 
and short mining our performance study shows patterns 
often, and an order of magnitude is ab out faster Apriori 
algorithm and even faster recently reported new frequent 
pattern mining methods. 
[2]Le Wang∗ , Lin Feng∗ , Jing Zhang, Pengyu Liao, 
Mainstream parallel algorithms for mining frequent 
itemsets (patterns) were designed by implementing FP-
Growth or Apriori algorithms on MapReduce (MR) 
framework. Current Mr FP-growth algorithm data between 
nodes cannot be evenly distributed, and Mr. Apriori 
algorithms use multiple processes map/reduce and even 
with the value of the generated several key value pairs; 
Tthesedisadvantages hinder their Performance. This paper 
proposes an algorithm FIMMR: it first of all local 
candidates as each data segment often item sets Khan, 
sorting applies strategies candidates, and then identifies 
global frequent item sets candidates. Experimental results 
show that FIMMR outperforms efficiency of PFP and SPC 
for quite some time; and minimum support threshold 
FIMMR small under one of the other two algorithms, order 
of magnitude improvements can achieve; Meanwhile, 
FIMMR of speedup is satisfactory.  
[3] S. K. Tanbeer, C. F. Ahmed, and B. S. Jeong, et al, 
FP-growth algorithm using FP-tree has been widely studied 
for frequent pattern mining because it can give a great 
performance improvement compared to the candidate 
generation-and-test paradigm of Apriori. However, it still 
requires two database scans which are not applicable to 
processing data streams. In this paper, we present a novel 
tree structure, called CP-tree (Compact Pattern tree), that 
captures database information with one scan (Insertion 
phase) and provides the same mining performance as the 
FP-growth method (Restructuring phase) by dynamic tree 
restructuring process. Moreover, CP-tree can give full 
functionalities for interactive and incremental mining. 
Extensive experimental results show that the CP-tree is 
efficient for frequent pattern mining, interactive, and 
incremental mining with single database scan. 
[4] Sankalp Mitra1, Suchit Bande2, Shreyas Kudale3, 
Advait Kulkarni4, Asst. Prof. Leena A. Deshpande, et 
al, As an important part of discovering association rules, 
frequent itemsets mining plays a key role in mining 
associations, correlations, causality and other important 
data mining tasks. Since some traditional frequent itemsets 
mining algorithms are unable to handle massive small files 
datasets effectively, such as high memory cost, high I/O 
overhead, and low computing performance, an improved 
Parallel FP-Growth (IPFP) algorithm and discuss its 
applications in this paper. In particular, a small files 
processing strategy for massive small files datasets to 
compensate defects of low read/write speed and low 
processing efficiency in Hadoop. Moreover, use of 
MapReduce to implement the parallelization of FP-Growth 
algorithm, thereby improving the overall performance of 

frequent itemsets mining. The experimental results show 
that the IPFP algorithm is feasible and valid with a good 
speedup and a higher mining efficiency,  and can meet the 
rapidly growing needs of frequent itemsets mining for 
massive small files datasets. 
[5] Jeffrey Dean and Sanjay Ghemawat, et al., 
MapReduce is a programming model and an associated 
implementation for processing and generating large data 
sets. Users specify a map function that processes a 
key/value pair to generate a set of intermediate key/value 
pairs, and a reduce function that merges all intermediate 
values associated with the same intermediate key. In many 
real world tasks such as paper model, expressible. Written 
in the functional style, the program automatically 
parallelized and executed on a large cluster of commodity 
machines. Description of the run-time system input data, a 
set of machines to determine the execution time of the 
program across, dealing with machine failures, and 
essential difference machine takes care of communication 
management. It's easy to use the resources of a large 
distributed system programmer for parallel and distributed 
systems without any experience with. Our Map Reduce 
implementation runs on a large cluster of commodity 
machines and highly scalable: a typical Map Reduce 
computation processes many terabytes of data on thousands 
of machines. Find the system easy to use programmer: Map 
Reduce programs have been implemented and hundreds of 
upwards of one thousand Map Reduce jobs are executed on 
Google groups every day. 
 

III. FREQUENT ITEMSET MINING 
Frequent itemset mining palys a key role in data mining 
that focuses on looking at sequences of actions or events, 
for example the order in which we get dressed. Shirt first? 
Pants first? Socks second item or second shirt if 
wintertime? Sequence analysis is used in a lot of different 
areas, and is also highly useful in games for finding 
behavioral patterns that lead to particular behaviors, for 
example a player quitting a game. Here is how it works. 
Frequent item set mining, data base instances (also called 
transactions) that each features (also called items) takes the 
form of a set of numbers. For example, items purchased 
from a dataset in a social online games 4 transactions can 
join as: 
 
Gurning, Awesomeness, beautiful pet shirt sword {} 
Awesomeness, cute pet, healing potion shirt {} 
Gurning, sword of healing potion {} 
{Shirt Awesomeness, fancy hats, cute pet} 
 
The frequent item set mining algorithm for work items 
(times at least a minimum quantity is present) support at 
least a minimum defined as those item sets, all is set. If 
support is set to 3, the following 1-itemsets (only one item) 
dataset described above can be found at: {sword of 
Grungni} and {beautiful pet}. 
 
It is also possible to find a 2-itemset: {shirt Awesomeness, 
beautiful pet}, as three transactions are both beautiful pet 
shirt and Awesomeness. 
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IV. FREQUENT ITEMSET MIMING USING MAP/REDUCE 
FIM using Map/Reduce comes with a large communication 
cost, i.e., the number of sets to be mined can be very large, 
moreover, the number of sets that have to be recounted can 
be very large as well. Implementing such partitioning 
technique in Hadoop is therefore prohibitive. A possible 
solution for the recounting part, is to mine the sub 
databases with a lower threshold, hence, decreasing the 
number of itemsets that might have been missed. However, 
another problem occurs: in fact, each shard may be local 
for local sub structure is very different from the rest of the 
data defines the database. As a result, the frequent item sets 
quite a few shards, though many of the sets are actually 
local structures and interesting so far around the world 
blow. This method since we divided the data instead of the 
search space are the space to deal with such problems to 
have. Therefore, No additional communication is required 
between mappers and no overlapping mining to check 
results. More specifically diffuses by using this technique, 
memory-wise for mining large datasets fit best. 
 

V. FP-GROWTH ALGOTITHM 
The FP-Growth Algorithm is an efficient and scalable 
method for mining the complete set of frequent patterns by 
pattern fragment growth, using an extended prefix-tree 
structure for storing compressed and crucial information 
about frequent patterns named frequent-pattern tree (FP-
tree). In his study, Han proved that his method outperforms 
other popular methods for mining frequent patterns, e.g. the 
Apriori Algorithm and the TreeProjection. In some later 
works it was proved that FP-Growth has better performance 
than other methods, including Eclat and Relim.The 
popularity and efficiency of FP-Growth Algorithm 
contributes with many studies that propose variations to 
improve his performance. 
After constructing the FP-Tree it’s possible to mine it to 
find the complete set of frequent patterns. To accomplish 
this job, Han in presents a group of lemmas and properties, 
and thereafter describes the FP-Growth Algorithm as 
presented below. 
 
Algorithm: FP-Growth 
Input: A database DB, represented by FP-tree constructed, 
and a minimum support threshold? 
Output: The complete set of frequent patterns. 
Method: call FP-growth (FP-tree, null). 
Procedure FP-growth (Tree, a) { 
(01) If Tree contains a single prefix path then // Mining 
single prefix-path FP-tree { 
(02) Let P be the single prefix-path part of Tree; 
(03) Let Q be the multipath part with the top branching 
node replaced by a null root; 
(04) For each combination (denoted as ß) of the nodes in 
the path P do 
(05) Generate pattern ß ∪ a with support = minimum 
support of nodes in ß; 
(06) Let freq pattern set (P) be the set of patterns so 
generated; 
} 
(07) Else let Q be Tree; 

(08) For each item ai in Q do {// Mining multipath FP-tree 
(09) Generate pattern ß = ai ∪ a with support = ai .support; 
(10) construct ß’s conditional pattern-base and then ß’s 
conditional FP-tree Tree ß; 
(11) If Tree ß ≠ Ø then 
(12) Call FP-growth (Tree ß, ß); 
(13) Let freq pattern set (Q) be the set of patterns so 
generated; 
} 
(14) Return (freq pattern set (P) ∪ freq pattern set (Q) ∪ 
(freq pattern set (P) × freq pattern set (Q))) 
} 
When a single prefix path FP-tree, full set often patterns 
can be generated in three parts: single prefix path P, Q and 
their combinations multipath (01-03 and 14 lines). A single 
prefix path for the resulting pattern is that enumerations 
support its sub paths (04-06 lines). Thereafter, (line 03 or 
07) multipath Q is defined and the resulting patterns are 
processed from it (lines 8 to13). Finally, in line 14 results 
found are returned as consistent patterns. 
 
SPO-Tree:  
Single Pass Ordered Tree SPO-Tree captures information 
with a single scan for incremental mining. All items in a 
transaction are inserted/sorted based on their frequency. 
The tree is reorganized dynamically when necessary. SPO-
Tree allows for easy maintenance in an incremental or data 
stream environment. 
 
CP-Tree 
Although CAN tree offer simple single pass construction 
process, it usually lead poor compaction in tree size 
compared FP tree. Therefore, it is storage and runtime 
inefficient causing higher mining time since the item in the 
tree are not stored in frequency descending order.[4] CP-
tree (Compact Pattern tree)[1], is a compact prefix-tree 
structure which is constructed with one database scan and 
provides the same mining performance as the FP-growth 
technique by efficient tree restructuring process. Build 
action mainly consists of two steps: Insert step inserts the 
transaction (s) CP-tree item appearance and update 
frequency counting I-list; According to related items and 
restructuring, according to the frequency of items that I list 
rearranges and tree nodes descending new I-list according 
to restructures. This step in restructuring the branch 
restructuring [2] (BRM). In restructuring the branch 
method this restructuring it unclassified path one after 
another sorting and I-list in descending order by frequency. 
CP-can tree from the tree and more negligible cost 
restructuring despite the tree data structure extremely 
compact; CP-a significant performance gain on overall 
runtime tree. 
 
CAN-Tree 
CAN Tree require only one database scan, this is differ 
from the FP tree that two database scan require. In CAN 
tree item arranged in some canonical order, which can be 
determined by user prior to the mining process or at a run 
time during mining process so it is unaffected by the item 
frequency unlike FPtree. Lexicographic order or item that 
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can be arranged in alphabetic order. Trees are good (i) item 
can totally order incremental updates is unaffected by 
changes in frequency caused by. (ii) At least her children as 
high as the sum of the frequencies of the frequency of node 
in the tree. Build tree can we similarly consistent pattern 
such as FP-tree approach and use the divide-and-conquer 
approach. That this traverse upwards in the database. Since 
items constantly in our Cantered Ordered, any insertions, 
deletions, and modifications of the transaction has no effect 
on the command tree item.  
 

VI. CONCLUSIONS AND FUTURE WORK 
The improved algorithm named as PISPO based on the 
character of evidence record, which needed to update a 
little sometime, which not only reduce the overall number 
of tree branches but also update the tree in real time. When 
adding new criminal record or some record has been 
changed, flag should distribute the item for a prefix tree 
updates. Items and flags in a transaction are inserted into 
the tree based on a descending order of frequency. The tree 
is reconstructed once the proportion of the edit distance of 
items in the sorted order changes above a certain threshold. 
This algorithm is based on a novel data and computation 
distribution scheme, which eliminates communication 
among computers virtually and makes it possible for us 
with the MapReduce model. We demonstrated that the 
algorithm is effective when on massive data scene should 
be mining. Our future work will extract and correlate the 
evidence stored by the jpg, rmvb, doc, wvm and so on 
based on non-relational database such as MongoDB. 
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